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1. Introduction

The nickel electrodes that are used in nickel-hydrogen cells require a well-made sintered-nickel
plaque as a substrate in their production. If the sintered-nickel plaque contains large voids, surface
protrusions, or other kinds of defects, it will not generally allow the production of high-performance
nickel electrodes. A number of processes are presently used for producing the sintered-nickel plaque
used in nickel-hydrogen cells. The principal processes include:

Process 1: Alcohol-based slurry process.
Process 2: Dry-powder process.
Process 3: Water-based, or aqueous slurry process.

The slurry processes mix the nickel powder with pore-forming materials into either a water- or alco-
hol-based slurry that is coated with the desired thickness onto a nickel screen, dried, and sintered.
The dry-powder process covers the nickel screen with a prescribed thickness of dry nickel powder,
which is directly sintered with no added pore-forming components.

All three of these processes have been used to produce sinter that has been used in well-performing
nickel electrodes. Each process has also been used to produce sinter having a range of thickness and
overall porosity. The thickness range of sinter made by these processes is typically 0.030 to 0.036 in.
and the range of porosities typically available is 76-84%.

’

Sinter made by any of these three processes is generally controlled to produce a sintered sheet having
both the desired thickness and overall porosity, as well as an adequate bend strength. Any internal
variations in pore size or porosity are not tracked or controlled, but simply emerge as the conse-
quences of that particular production process and its process controls. Here we have measured the
variations in the internal pore characteristics of sinter made by all three processes. The objective of
this study is to determine what, if any, systematic differences in the internal pore structure exist for
nickel sinter made by each process.




2. Sinter Samples

A range of samples of various types of sintered-nickel plaque was obtained for this study. The sam-
ples are listed and described in Table 1. For each sinter sample obtained for analysis, two pieces were
cut from different parts of the sample and analyzed separately. The A and B pieces are from one
sinter sample, while the C and D pieces (or E and F pieces) are from additional sinter samples. Each
piece of sinter used for the analysis was approximately 1 in. by 0.5 in. in size. Table 1 reports the
measured thickness and porosity for each analysis piece. The nominal thicknesses are 30 mils for all
the slurry samples (except 36 mils for 6A and 6B, and 33 mils for 6C and 6D), and 35 mils for all the
dry-powder samples. The reported thickness measurements are the average of four measurements at
different locations on each piece of sintered plaque. The nominal porosity is 76% for all slurry sam-
ples (except 78% for 6C and 6D) and 80% for all dry-powder samples. The reported porosity of each
piece was determined from its volume (based on the measured thickness, length, and width of each
piece) and weight, and assuming that it was composed of pure nickel metal.

Table 1. Sinter Samples Analyzed.

ID Sample ID Process Thickness (mils)  Porosity (%) Treatment
1A 4.5” coined sheet Alcohol slurry 30.28 76.18 Oxidized
1B 4.5” coined sheet Alcohol slurry 30.75 76.07 Oxidized
1C 3.5” coined sheet Alcohol slurry 29.45 75.50 Oxidized
1D 3.5” coined sheet Alcohol slurry 29.45 75.84 Oxidized
2A L-439 C4 Alcohol slurry 31.50 76.02 Unoxidized
2B L-439 C4 Alcohol slurry 30.51 75.53 Unoxidized
2C L-439 C4 Alcohol slurry 31.69 76.27 Unoxidized
2D L-439 C4 Alcohol slurry 30.67 75.66 Unoxidized
3A L-438 C4 Alcohol slurry 29.65 76.09 Oxidized
3B L-438 C4 Alcohol slurry 29.72 75.84 Oxidized
3C L-438 C4 Alcohol slurry 29.41 76.02 Oxidized
3D L-438 C4 Alcohol slurry 29.02 7572 Oxidized
4A L-0995 Dry powder 34.69 80.99 Unoxidized
4B L-0995 Dry powder 34.72 81.16 Unoxidized
4C L-0995 Dry -powder 34.45 80.72 Unoxidized
4D L-0995 Dry powder 34.21 80.15 Unoxidized
5A L-0992 Dry powder 36.10 81.95 Oxidized
5B L-0992 Dry powder 35.63 81.52 Oxidized
5C L-0992 Dry powder 34.96 80.79 Oxidized
5D L-0992 Dry powder 34.92 80.99 Oxidized
6A 60-05-135-0 Aqueous slurry 37.95 77.99 .-

6B 60-05-135-0 Aqueous slurry 35.78 76.59

6C 60-05-125-0 Aqueous slurry 34.45 78.90

6D 60-05-125-0 Aqueous slurry 32.83 78.59 -

6E 60-05-113-0 Aqueous slurry 31.10 76.63 ---

6F 60-05-113-0 Aqueous slurry 31.18 76.76




The porosities reported in Table 1 include the nickel screen that is imbedded within the sinter as an
electrically conductive supporting structure. If this supporting screen is not considered in determin-
ing the sinter porosity, a porosity for the sinter alone that is about 4% greater than that reported in
Table 1 is obtained. The lower porosity that includes the screen is referred to as the plaque porosity,
while sinter porosity refers to the sinter without the imbedded screen. All porosimetry measurements

reported in the following sections refer to the sinter porosity, rather than the plaque porosity reported
in Table 1.




3. Porosimetry Measurement and Analysis Method

The pores within each sample of sintered-nickel plaque were measured and analyzed using a method
similar to the Scanning Porosimetry technique reported in Proc. of the 17" Annual Battery Conf. on
Appl. and Adv.* Each sample was potted, cross-sectioned, and polished to enable high-quality
images of the internal sinter to be obtained. However, rather than using piezoelectric positioners to
automatically scan across the conductive features of the sinter as was done previously,” Scanning
Electron Microscopy (SEM) images of the sinter were obtained that provided good contrast between
the nickel sinter particles and the pores between the sinter particles. These SEM images were
obtained with a resolution of 1 ym, with each image showing a 1200-xm length of the sinter sample.
A typical SEM image is indicated in Figure 1. Approximately 20 non-overlapping images such as
that indicated in Figure 1 were required to completely image all pores across the 1-in. length of each
cross-sectioned sinter sample. In these SEM images, the nickel screen wires show up as large white
circles or ellipses, the nickel sinter particles as small white regions, and the pores as dark regions that
are surrounded by the sinter particles.

The method used to detect and measure the pores in each sinter piece involved scanning the pixels in
a vertical line through the imaged cross-section of the sinter. A pore was detected and its size deter-
mined by the length of a dark segment of the line-scan, where the dark segment was terminated at
each end by a region that was brighter than a threshold that was chosen for each image to discriminate
between the nickel sinter and the void regions. This threshold was chosen to correspond to the mini
mum in the distribution of pixel brightness that made up the image, as indicated in Figure 2 for a

X186 1868rpm

Figure 1. Typical SEM image of a cross-sectioned sinter sample.

* Zimmerman, A. H., G. A. To and M. V. Quinzio, Scanning Porosimetry for Characterization of Porous Electrode
Structures, Proc. of the 17" Annual Battery Conf. on Appl. and Adv., IEEE 02TH8576, ISBN 0-7803-7132-1, 2002, Pp-
293-298.
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Figure 2. Distribution of the pixel luminosity over a typical 1200- by 960-xm SEM image of a cross-
sectioned nickel sinter sample.

typical sample. Because the pixels in each image have a 1-um resolution, the boundaries between
sinter particle and void could be determined to 0.1-um precision by interpolation of the intensity gra-
dients between adjacent pixels. While the procedure did not allow pores smaller than 0.5 gm in
diameter to be detected, it did enable the size of the pores that are detected to be determined to +0.2
Jm precision.

The line-scans that were applied to a sinter image such as shown in Figure 1 were spaced such that
adjacent scans would not pass through the same circular void regions, thus avoiding the possibility of
counting large pores twice during adjacent scans. This requirement led to significantly greater spac-
ing between adjacent line-scans when large pores were detected, than when the pores were smaller.
In addition, the line scans were located so that they did not pass through any of the large grid wires
shown in Figure 1, which have zero porosity.

The one-dimensional line-scan method used to detect pore sizes as described above assumes that the
pores are randomly oriented and have random shapes. Examination of images such as those shown in
Figure 1 suggest that this is true for the most part, although occasionally long horizontal voids are
seen. With the line-scan method used here, a long horizontal void would be counted as a chain of
nearly circular pores having a diameter equal to the vertical width of the void. No preferentially
vertical-oriented voids (vertical cracks) were seen in any of these sinter samples.

Approximately 320 line-scans were carried out over the 20-21 images that spanned the 1-in.-long
cross-sectioned sample. These scans typically detected 12,000 to 20,000 pores of various sizes rang-
ing from 0.5 ym to over 100 ym in diameter. These pores were sorted into 5 bins that corresponded




to different locations through the thickness of the sinter. Bins 1 and 5 corresponded to the surface
regions on each side of the sinter, while bin 3 corresponded to the center of the sinter. The location of
the center of each pore dictated the bin into which it was placed. These five bins thus provide an
indication of how uniform the pore characteristics are through the thickness of the sinter. The distri-
bution of average pore size, average porosity, or pore uniformity through the sinter thickness can be
readily examined, along with the changes in the pore size distribution through the sinter.




4. Unique Sinter Structures

A number of unusual or unique structural features were seen when analyzing the SEM images during
this study. The sinter shown in Figure 1 is typical of a relatively uniform and desirable structure. The
types of departure from this relatively uniform structure, which are in some cases key factors in dic-
tating the porosity characteristics, can be classified into either abnormal voids or abnormal nickel
aggregates. Each of these types of features will be shown and discussed here, along with an indica-
tion of what types of sinter showed each condition and how frequently it was seen.

4.1 Unusual Sinter Voids

The type of void that was most often found to strongly influence the pore size distribution was the
large internal void. These types of voids were seen exclusively in slurry sinter, and were seen with
much greater frequency in the alcohol-based slurry sinter. These voids may be classified as voids
associated with central grid wires in the sinter, or large voids away from the center of the sinter and
its supporting grid structure. The former type of void is shown in Figure 3, while the latter type is
shown in Figure 4.
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Figure 3. Large void frequently seen in alcohol-based slurry sinter away from the center
grid-containing region.
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Figure 4. Large voids frequently seen in alcohol-based slurry sinter in proximity with the
center grid wires.

The large voids shown in Figures 3 and 4 are particularly undesirable because if they are loaded with
nickel electrode active material, the active material is not very well utilized for storing energy
because of the large distance through the active material to the nearest conductive metal surfaces. If
the voids are not loaded with active material, the sinter must be over-loaded elsewhere to provide the
correct average amount of active material. Typically, nickel electrodes made from sinter having large
internal voids exhibit a significantly lower utilization than can be obtained with a uniform sinter. The
large voids can also act as stress points within the finished nickel electrode where blisters can form or
the sinter can delaminate from the grid after long-term electrode operation. In several instances, the
large voids seen in Figure 4 appeared to be reduced in thickness to where the void appeared more as a
crack along the center line where the grid wires were situated in the sinter, as shown in Figure 5.

Voids within the sinter were also seen in dry-powder sinter, although these voids typically had a dif-
ferent appearance than those in slurry sinter (Figures 3 through 5). In dry sinter the most common
type of void is seen immediately around a portion of the grid wires, where it appears that the nickel
powder separated from the grid wire prior to or during the sintering operation. This type of void is
shown in Figure 6. While this kind of void tends to cause the same type of reduced nickel electrode
utilization that large voids cause in slurry sinter, it can provide an oxygen flow path from the interior
of the nickel electrode to the outer surface. In dry-powder sinter, the grid wire structure is generally
situated at one edge of the sinter, thus any significant voids around these grid wires are often open to
the electrode surface, as is the case in Figure 6. One can often visually see the exposed grid wires
through such voids on the surface of the sinter. This type of surface void is why the screen side of
dry-powder sinter is positioned so that it does not face the separator in nickel-hydrogen cells.
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The second type of void that is occasionally seen in dry-powder sinter is a crack in the sinter, an
example of which is shown in Figure 7. These cracks appear in most instances to have formed before
the powder was sintered since there is no evidence of actual breaking of the necks between the sinter
particles, and is probably caused by movement of the powder layers prior to sintering. These cracks
can act as stress points where blisters form in finished nickel electrodes.

4.2 Unusual Sinter Aggregates

In addition to voids in nickel sinter, undesirable aggregates of nickel powder are also sometimes seen.
The most common type of aggregate is a region of high-density nickel powder imbedded within the
sinter. An example is shown in Figure 8 for an alcohol-based slurry sinter sample, which is the type
of sinter that most commonly displays this type of aggregate. Aggregates of this type were much less
common in the waster-based slurry sinter samples, and when seen tended to be significantly smaller
than those shown in Figure 8. Aggregates of the type shown in Figure 8 mean that there are lower
density regions elsewhere in the sinter if it is manufactured to the required overall porosity. The
lower density regions (which often include larger voids) will tend to be loaded with more active mate-
rial than the high-density regions shown in Figure 8, but will have lower utilization and thus reduce
the overall utilization of the nickel electrode. One unusual aggregate was seen protruding from the
surface of a water-based slurry sinter sample, as shown in Figure 9. A protruding aggregate of this
type is a concern because it can cause a stress point on the separator in a nickel-hydrogen cell stack,
potentially increasing the probability of separator damage and the formation of a short circuit.

Figure 7. Horizontal crack or void occasionally seen on the side of dry-powder sinter
where there are no supporting grid wires.
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Figure 8. High-density aggregates of nickel powder frequently seen in alcohol-based
slurry nickel sinter.
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Figure 9. Surface aggregate or lump of high-density nickel powder seen infrequently
(once) for water-based slurry nickel sinter.




Aggregates of nickel in dry-powder sinter have a quite different appearance than those illustrated in
Figures 8 or 9. The most common type of aggregate in dry-powder sinter is an extended chain of
nickel particles that have been sintered into loops having either open (most common) or closed
geometry. An example of a closed-loop aggregate is shown in the bottom-center region of Figure 10.
While these chains and looped chains of sinter can be as large as 50 um in size, they are not expected
to have a significant effect on the performance of the dry-powder sinter because they do not appear to
significantly alter the sizes or distributions of pores within the sinter.

An example of an unusual aggregate was observed in a sample of dry-powder sinter. This aggregate
appeared as a needle-like particle of solid nickel metal, and is shown in the bottom-center region of
Figure 11. It is not clear whether this was a large pre-sintering fragment of metal, or whether it is
simply a mass of smaller particles that were melted into a larger particle having a quite unusual and
regular shape.

Figure 10. Nickel particles sintered into a closed-
loop chain in a dry-powder sinter sample.

Figure 11. Needle-shaped nickel fragment seen in one sample
of dry-powder nickel sinter.
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5. Porosimetry Results

The porosimetry analysis described in Section 3 results in distributions of pore volume as a function
of pore size within each of the five regions through the thickness of each sinter sample. These pore
size distributions reveal how the internal pore volume is distributed between differing types of pores
in the samples. It is possible that some regions can exhibit bi-modal size distributions, while others
can exhibit distributions where the pore volume is mostly in a few large voids, while other samples
may exhibit quite uniform distributions throughout their thickness. In general, it is desirable to have
relatively uniform distributions of pore volume. In addition, the average pore size and the average
sinter porosity may be determined from the pore size distributions through the thickness of each sinter
sample. In this section, the detailed results of the porosimetry results obtained here are described for
the alcohol-based slurry sinter, the water-based slurry sinter, and the dry-powder sinter.

5.1 Alcohol-Based Slurry Sinter

As indicated in Table 1, twelve samples of alcohol-based slurry sinter were analyzed. The typical
variation in pore size distribution through the thickness of these samples is shown in Figure 12. The
most noteworthy characteristic of these distributions is the large increase in the pore sizes toward the
center of the sample. This change is entirely due to the large voids seen in this type of slurry, and
which are illustrated in Figures 3 and 4.

800000 ——10% through sinter A
— 30% through sinter / \\
— 50% through sinter
700000 ——70% through sinter
90% through sinter /

600000 / \\
500000 _
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Figure 12. Changes in the pore size distribution through the thickness of a typical sample of alcohol-
based slurry sinter. These data are from sample 2D.
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The changes in the pore size distributions are more easily compared for the different sinter samples
by plotting the average pore size and the average sinter porosity as a function of the sinter thickness.
These plots are shown in Figures 13 through 18 for the alcohol-based slurry sinter samples in Groups
1 through 3.

The most significant variation in pore characteristics in these alcohol-based slurry samples is the large
average pore size at the center of the plaque in many (but not all) of the samples analyzed. This peak
arises from the large voids that frequently are seen at the center of the sinter, often in association with
the location of the nickel screen wires. These voids are, however, not always present, as can be seen
in Figure 15 where only one of the pieces cut from each sinter sample had the large internal voids. In
the areas where the large internal voids were detected, the average pore size near the center of the
sinter exceeded 80 xm, while in the areas that did not display the large internal voids the average pore
size near the center of the sinter was about 45 gm. While these variations in internal pore size are
likely to cause a noticeable decrease in the utilization of nickel electrodes made from this sinter, his-
torically slurry sinter that contains large internal voids has been used to produce acceptably perform-
ing nickel electrodes.

The average porosity of the sinter samples in these three groups shows several features of interest.
First, the samples having large internal voids also have a peak in the average porosity that results
from the large voids. This is an expected result from the non-uniform porosity that is caused by the
large voids. The second signature, which is characteristic of slurry sinter in general, is the decrease in
average porosity at the surfaces of the sinter. Slurry sinter always seems to have a “skin” of higher
density sinter at its surfaces. This characteristic lends it some added strength, and can also act to pre-
vent active material from being easily extruded from the pores at the “skin” of the sinter.
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Figure 13.  Variation in the average pore size through the thickness of alcohol-based slurry sinter
samples from Group 1.
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Figure 15.  Variation in the average pore size through the thickness of alcohol-based slurry sinter sam-

ples from Group 2.
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Figure 16. Variation in the average sinter porosity through the thickness of alcohol-based slurry sinter
samples from Group 2.
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Figure 17. Variation in the average pore size through the thickness of alcohol-based slurry sinter
samples from Group 3.
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Figure 18. Variation in the average sinter porosity through the thickness of alcohol-based slurry sinter
samples from Group 3.

These results suggest that alcohol-based slurry sinter plaques of the types analyzed here consist of a
composite of many regions containing large internal voids and some other regions containing a rela-
tively uniform pore distribution through the plaque thickness. In the regions with large voids, the
average pore size can exceed 80 um at the center of the plaque. In the regions with uniform pore size
distributions, the pore sizes typically range from 25 to 45 ym through the thickness of the plaque.

Comparison of the oxidized to the un-oxidized plaque samples indicated that the oxidation process
did not significantly affect the porosity or pore size characteristics.

5.2 Water-Based (Aqueous) Slurry Sinter

As indicated in Table 1, six samples of water-based slurry sinter were analyzed. The typical variation
in pore size distribution through the thickness of these samples is shown in Figure 19. In this figure,
the sinter appears to consist of two overlapping distributions. A sub-distribution peaking at about 35
um appears to correspond to a uniform distribution that exists in the outer layers and in about 50% of
the central volume of the plaque. A second sub-distribution peaking at about 50-60 ym appears to
coincide with larger pores or voids in the center of the sinter. These larger pores are much smaller
than the 100-140 pm voids seen in alcohol-based slurry sinter, and also appear to follow a statisti-
cally discrete distribution function.

The changes in the pore size distributions are more easily compared for the different sinter samples
by plotting the average pore size and the average sinter porosity as a function of the sinter thickness.
These plots are shown in Figures 20 and 21 for the water-based slurry sinter samples in Group 6.
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Figure 21. Variation in the average sinter porosity through the thickness of water-based (aqueous)
slurry sinter samples from Group 6.

In comparison with the alcohol-based slurry samples, the water-based slurry appears to be much more
uniform through its thickness, both in terms of the pore size and the sinter porosity. It still exhibits
the more dense “skin” that is generally associated with slurry sinter; however, the porosity increases
at this “skin” are less pronounced. One sample (6C) displayed peaks in both the porosity and pore
size that correspond to some small voids about 70% through the thickness of this piece.

The sinter samples from the aqueous slurry process included samples of three differing thicknesses
and two differing average porosities, yet no real systematic variations in either pore size or sinter
porosity are seen in response to these process changes. This apparent insensitivity of the pore char-
acteristics to intentional process changes suggests that the process controls are relatively robust for
making this type of sinter.

53 Dry-Powder Sinter

As indicated in Table 1, eight samples of dry-powder sinter were analyzed. The typical variation in
pore size distribution through the thickness of these samples is shown in Figure 22. In this figure, the
sinter consists of two overlapping distributions. A sub-distribution peaking at about 35 ym appears to
correspond to a uniform distribution that exists to some degree in all regions through the plaque. A
second sub-distribution peaking at about 60 xm appears to coincide with larger pores in the sinter.
The peak at about 85 um in the distribution 90% of the way through the sinter is largely caused by the
voids around the grid wires that are illustrated in Figure 6. If these grid-wire voids are ignored, the
pore distributions for dry sinter are remarkably similar to those of aqueous slurry sinter.
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Figure 22. Changes in the pore size distribution through the thickness of a typical sample of dry-
powder sinter. These data are from sample 4A.

The changes in the pore size distributions are more easily compa ed for the different sinter samples
by plotting the average pore size and the average sinter porosity as a function of the sinter thickness.
These plots are shown in Figuress 23 through 26 for the dry-powder sinter samples in Groups 4 and 5.

The pore sizes for the dry-powder sinter range from 40 to 70 xm through the thickness of the sam-
ples. These pore sizes are generally larger than for the regions in slurry sinter that do not contain
large voids, whether alcohol or water based. Because the dry-powder plaque has its internal nickel-
supporting screen on one side, the plaque has intrinsic gradients through its thickness. The screen
side can have a somewhat denser sinter because the nickel powder settles slightly before it is sintered.
However, this effect can be offset by voids that can form around the grid wires. When these effects
are combined with some compression of the skin of the sinter that is often seen, the result can be two
peaks in the sinter porosity, one on the screen side and one on the other side. This behavior can be
seen in Figures 24 and 26.

While the pore sizes within dry-powder sinter are seen to vary in the 40-70 um range, there is not an
extremely large variation in the average sinter porosity. The densest “skin” regions of the dry-powder
sinter drop to 80-81% porosity, which is only 3-4% lower than the nominal overall plaque porosity.
Similarly, the most porous interior regions of the dry-powder sinter rise to 88-89% porosity, which is
only 4-5% higher than the nominal overall plaque porosity. It can be noted by examination of Table

1 that most of these dry-powder sinter samples had an overall plaque porosity about 1% greater than
the nominal 80% porosity expected for this type of dry-powder sinter.
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Figure 23.  Variation in the average pore size through the thickness of dry-powder sinter samples
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from Group 4.

95
Dry powder, 35 mil thick, 81% plaque porosity, Sample 1-A
e e Unoxidized...........o e — —Sample 1-B
—— Sample 2-C
e e e A E——— —_ — —Sample 2-D

Group 4

Screen Side

77 B =S e U R PR e S S S s PR TS TP T Y P P T IR T P TP O LI P AR D T T
75 T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100

Percent of plaque thickness

Figure 24.  Variation in the average sinter porosity through the thickness of dry-powder sinter sam-

ples from Group 4. The overall sinter porosity in these samples is nominally 84%.
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Figure 25. Variation in the average pore size through the thickness of dry-powder sinter samples from
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Figure 26. Variation in the average sinter porosity through the thickness of dry-powder sinter samples

from Group 5. The overall sinter porosity in these samples is nominally 84%.




6. Discussion of Results

Each of the three types of sinter analyzed here displays some unique signatures in terms of the pore
size distributions, as well as their uniformity through the thickness and over the surface of the sintered
plaque samples.

The alcohol-based slurry plaque displays pore distributions that are dominated by large internal voids
combined with regions of highly densified sinter. These highly non-uniform regions of sinter occur
in more than 50% of the plaque samples analyzed; however, a number of regions containing much
more uniform distributions of pore sizes were also observed. Thus, the pore characteristics of the
alcohol-based slurry plaque and the other types of sinter studied here are probably best evaluated
based on the uniformity of the pore distribution through the plaque thickness from sample to sample.

Evaluation of pore uniformity was made by expressing the range of observed pore sizes or porosity
through the thickness of all samples from each sinter group as a percentage of the overall average
pore size or porosity. Pore variability or uniformity expressed in this manner is indicated in Figures
27 and 28Figure 27 graphically shows that pore size uniformity is poor and highly variable in the
alcohol-based slurry, while the dry sinter and water-based slurry sinter have considerably less pore
size variability. Figure 28 graphically illustrates that the alcohol-based slurry also has much greater
variability in its porosity, while the dry sinter and water-based slurry sinter have a much more uni-
form sinter porosity.
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Figure 27. Variability in pore size (as a percentage of overall average pore size) for each type of sinter.
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7. Conclusions

The porosity characteristics of nickel sinter made by three different processes has been evaluated by
line-scan analysis of SEM images, and some significant differences in the internal structure of these
different types of sinter have been observed. The structure of the alcohol-based slurry sinter tends to
contain large internal voids as well as high-density aggregates of nickel that make the sinter porosity
and pore sizes highly non-uniform. This type of nonuniformity was seen through the thickness of the
alcohol-based slurry sinter, and was also found to be highly variable from one area of plaque to
another.

The dry sinter and the water-based slurry sinter were both found to be much more uniform, in spite of
having very different average internal pore sizes. The aqueous slurry sinter (and the uniform regions
of the alcohol-based slurry sinter) displayed a smaller average pore size than did the dry-powder
sinter. The aqueous slurry sinter process appears to offer a means to consistently obtain the smaller
average pore sizes associated with the slurry process, along with the high degree of pore uniformity
associated with the dry-powder process.
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